Calibration setup
The calibration examples all rely on the functions shown here.
List of metrics provided by Streamfall can be found in Included metrics
Importing shared/common packages
# Ensure dependent data and packages are available
using Statistics, DataFrames, CSV
using Distributed, BlackBoxOptim
using ModelParameters
using Graphs, MetaGraphs
using YAML, Plots
using Streamfall
Load network specification
Note that the DATA_PATH
is pointing to the test/data/campaspe/
directory.
# Load and generate stream network
network = YAML.load_file(joinpath(DATA_PATH, "campaspe_network.yml"))
sn = create_network("Example Network", network)
Loading historic data
# Load climate data
date_format = "YYYY-mm-dd"
climate_data = CSV.File(joinpath(data_path, "climate/climate_historic.csv"),
comment="#",
dateformat=date_format) |> DataFrame
dam_level_fn = joinpath(data_path, "dam/historic_levels_for_fit.csv")
dam_releases_fn = joinpath(data_path, "dam/historic_releases.csv")
hist_dam_levels = CSV.File(dam_level_fn, dateformat=date_format) |> DataFrame
hist_dam_releases = CSV.File(dam_releases_fn, dateformat=date_format) |> DataFrame
# Subset to same range
climate_data, hist_dam_levels, hist_dam_releases = Streamfall.align_time_frame(climate_data,
hist_dam_levels,
hist_dam_releases)
# Create historic data alias
hist_data = Dict(
"406000" => hist_dam_levels[:, "Dam Level [mAHD]"]
)
# Create climate object
climate = Climate(climate_data, "_rain", "_evap")
Example objective functions
"""Calibrate current node."""
function obj_func(params, climate, sn, v_id, calib_data::Dict)
this_node = get_node(sn, v_id)
update_params!(this_node, params...)
# Running next node will run this node
Streamfall.run_node!(sn, v_id, climate; extraction=hist_dam_releases)
n_data = this_node.outflow
h_data = calib_data[this_node.node_id]
# Calculate score (NNSE; 0 to 1)
NNSE = Streamfall.NNSE(h_data, n_data)
# Switch fitness direction as we want to minimize
score = 1.0 - NNSE
# reset to clear stored values
reset!(sn)
return score
end
"""Example objective function when performance of current node is dependent
on the next node.
"""
function obj_func(params, climate, sn, v_id, next_vid, calib_data::Dict)
this_node = get_node(sn, v_id)
update_params!(this_node, params...)
# Run next node which will run this node
next_node = get_node(sn, next_vid)
releases = calib_data["$(next_node.node_id)_releases"]
Streamfall.run_node!(sn, next_vid, climate; extraction=releases)
# Alias data as necessary
if next_node.node_id == "406000"
n_data = next_node.level
h_data = calib_data[next_node.node_id]
elseif this_node.node_id == "406000"
n_data = this_node.level
h_data = calib_data[this_node.node_id]
else
n_data = this_node.outflow
h_data = calib_data[this_node.node_id]
end
NNSE = Streamfall.NNSE(h_data, n_data)
score = 1.0 - NNSE
reset!(sn)
return score
end
"""Alternative objective function for example.
This uses a naive split meta-objective function using the Normalized KGE' method.
See `metrics` page for details.
"""
function alt_obj_func(params, climate, sn, v_id, next_vid, calib_data::Dict)
this_node = get_node(sn, v_id)
update_params!(this_node, params...)
# Run next node (which will also run this node)
Streamfall.run_node!(sn, next_vid, climate; extraction=hist_dam_releases)
next_node = get_node(sn, next_vid)
# Alias data as necessary
if next_node.node_id == "406000"
n_data = next_node.level
h_data = calib_data[next_node.node_id]
elseif this_node.node_id == "406000"
n_data = this_node.level
h_data = calib_data[this_node.node_id]
else
n_data = this_node.outflow
h_data = calib_data[this_node.node_id]
end
split_NmKGE = Streamfall.naive_split_metric(h_data, n_data; n_members=365, metric=Streamfall.NmKGE, comb_method=mean)
score = 1.0 - split_NmKGE
reset!(sn)
return score
end